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Pentacene, a simple linear oligoacene consisting of five fused
benzene rings, has emerged as a viable candidate for the semicon-
ducting transport layer in organic thin film transistors (OTFTS).

The interest in pentacene films, which exhibit p-type transport,
primarily stems from their relatively high hole mobilities and high
on-to-off current ratios in OTFT3Carrier transport in the channel
between the source and drain electrodes is thought to occur in the
first few layers of the semiconductor, or perhaps the first layer, in
proximity with the dielectric layer adjacent to the gate electrotie.

It is also widely recognized that the transport properties of
crystalline organic films depend strongly on the intermolecular
overlap of electronic wave functions within the semiconductor layer,
which is very sensitive to the molecular packing in the cry&tal.
Surprisingly, little is known about the detailed crystal structure of
the active transport layers in OTFTs, including pentacene films. Figure 1. A tapping-mode AFM image, acquired in air under ambient
We report herein preliminary grazing-angle incidence X-ray dif- conditions, of monolayer-thick pentacene domains on a 3000 A th&i0,
fraction (GIXD) data for a monolayer-thick pentacene film grown film. Inset: Pentacene monolayer structure based on GIXD.
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Despite its importance to transport, structural characterization of

Figure 2. GIXD pattern (bottom) for a pentacene monolayer and a
theabplane in the multilayer phases has been limited to subStrateSdlffractlon pattern (top) calculated for an energy-minimized crystal structure
other thara-SiO,,121316-18 and the crystal structure of a pentacene model based on the GIXD lattice parameters and the (001) layer motif of
monolayer on any substrate, includiagiO,, has not been reported.  bulk pentacene as the starting point.

Atomic force microscopy (AFM) of a vacuum sublimed penta-
cene monolayé? on a-SiO, reveals micrometer-sized domains with
a thickness of 16.@ 0.6 A (Figure 1)?° Characterization of this
pentacene monolayer by GIXD at room temperatuaéforded a
diffraction pattern (Figure 2) that could be indexed to a near-
rectangular in-plane unit cell with dimensioas= 5.916 A,b =
7.588 A, andy = 89.95. These values differ from the correspond-
ing lattice parameters reported for bulk pentacene 6.266 A,b
= 7.775 A, andy = 84.684), but are consistent with a packing

motif resembling the (001) layers in the bulk form, that is, with
the pentacene molecules in the monolayer adopting a near-vertical
orientation on the-SiO, substrate. The diffraction peaks were very
narrow, consistent with crystallite sizes’0 nm and in agreement
with the large domains observed by AFM. The peak widths increase
with increasingagy, beyond that expected from Deby8cherrer
broadening, suggesting small variations in the in-pléispacings

of the crystallite$? A broad feature centered gt, = 1.55 AL is

due to the amorphous SiQubstrate.

t University of Minnesota. A model of the mpnolayer structure was constructed using the
* Stanford Linear Accelerator Center. room-temperature single-crystal structure of bulk pentacene as a
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Figure 3. Normal views of theab planes of bulk pentacene and the model

monolayer structures (left) and the respective side views (center, right).
The z-axis is the normal to thab plane.

starting point. Thea andb lattice parameters of the bulk structure
were adjusted to the monolayer values, and the interlaygr
spacing was expanded to an arbitrarily large distance (800 A) to
mimic an isolated monolayer. The lowest energy monolayer
structure (ignoring contributions from the substrate) was then
determined using the universal force field within the Ceékrius
environment (Accelrys} The diffraction pattern produced by this

energy-minimized monolayer structure is in reasonable agreement

with the GIXD data, although the integrated intensities for some
of the diffraction peaks for the preliminary model structure differ
from those observed experimentally, particularly the relative

intensities of the (11) and (02) peaks. Some of the discrepancy can

be attributed to contributions from theSiO, background, par-
ticularly in the lowerq,, region. We anticipate that a more complete
data set, particularly data collectedcat> 0, will permit precise
determination of the pentacene tilt and an improved refinement of
the crystal structuré® Nevertheless, the GIXD data demonstrate
unequivocally that the pentacene monolayer oretl$0, dielectric
layer is highly crystalline and has a structure that is distinguishable
from the bulk.

The energy-minimized monolayer structure exhibits a her-
ringbone packing of the pentacene molecules similar to that
observed in the bulk (Figure 3). The herringbone “edge-to-face”
angle between pentacene molecules is 4&4 compared to 5223

angle in bulk pentacene. The pentacene molecules in the bulk phase

tilt 25.1° with respect to the surface norma) @long an azimuthal
angle of 139.7 (clockwise) with respect to tha axis. In contrast,

the pentacene molecules in the model structure are tilted along the

a axis by 1P with respect toz, and the tilt along thé axis is
negligible. On the basis of this tilt and an estimated length of ca.
16.4 A for the pentacene molecule, the anticipated monolayer

uniquely suited for unraveling the structugroperty relationships
associated with carrier transport in these films because it can probe
the region near the dielectric layer where transport most likely
occurs. Furthermore, GIXD can be used to characterize films on
various substrates and during application of gate bias, providing
much-needed insight into the factors governing performance of
OTFTs under actual operating conditions.
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